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The conditions of solvability are established for a system of differential equations of parabolic type with

discontinuous coefficients, for which a continuous solution is sought, although the derivative may have a
discontinuity on the line of discontinuity of the coefficients,

Many problems associated with transfer of energy and matter, and, in particular, certain problems of heat and
mass transfer in drying processes and in capillary-porous material, lead to a system of differential equations of parabol-

ic type [1, 2]

In [3, 4] various problems involving a system of differential equations of parabolic type with smooth coefficients

were examined, This paper deals with the case when the coefficients are discontinuous,
It is required to find a regular solution of the system
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where k;({ =1, 2, 3, 4) are positive constants,
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Obviously, conditions (8) will be satisfied when (3') and (3") are met, We now apply to system (1) and conditions (3")
and (3") a Fourier transformation with respect to y and a Laplace transformation with respect to t. Then (1) transforms

to the following system of ordinary differential equations:
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and conditions (3') and (3"), respectively, to

0,%, % D=9 p (=19,
dU,(x, a, p)
dx
dUs(x, a, p)

A5 Lo

— 9 (a7P), (32)

x=+0

ky

ks = 64 (2, p},

(5 o PDlymo = 0@ p) (=1, 2),

S

dﬁl (xa a, p) = (3b)

k
* dx x=—0 .

d(:]Z (x’ &, p)

k
4 dx

x===0

We solve (1') for x = 0 and x < 0 separately, Then the solution of (1') satisfying (3a) has the form:
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The solution of (1') satisfying (3b) has the form:
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Since we are seeking a regular solution and assuming Re (3 o2 + p/i;) > 0, from (4) and (5), imposing the condition
of regularity when x = & %, we obtain the system
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Here j= 1, 2. Since system (6) is interdependent for i = 1 and i = 2, to be definite we choose i = 1. Then the system
of four algebraic equations (6) has the determinant
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If the determinant A is nonzero in the region G(Rep>0,— o &« o'« 4 o), then we can find all the 5i (c. p)

uniquely from (6).

Let us assume that A = 0, i,e.,
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Then, using (6), we transform (4) and (5) as follows:
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mined from (6). Then, applying the inverse transforms to both (4') and (5), we have
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We assume that we can apply inverse Fourier-Laplace transforms to the functions @, (@, p) (v=1, 2).deter-
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We now find the condition for which the inverse Fourier-Laplace transforms of @y (2, p) (v =1, 2)exist, For

this, we introduce the following notation
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From (10) it is easy to obtain the equalities
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Equating the left side of (7) to zero and using (10), we obtain

o125 + C32125 + CaZa?s + €124 + €425 + C525 =0. (12)

Thus, we have a system of equations (11), (12) in three unknowns z;, 2z, and z,

Let zyk, Zgk, Zsk be a solution of (11) and (12) (k is the number of the solution). Substituting this solution into
(10), we find
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which is a root of the equation A = 0, The two remaining expressions from (10), analogous to (13), transform into (13)
with the aid of (11), We shall therefore examine only the one expression (13).

It is clear from (13), that if Re A > 0, then Re p > 0, Then, as a{— oo <a < + OO) varies, the pdint p, de-~
termined by (13), necessarily falls on the straight line (s — i @, ¢ -~ { c0), along which integration is carried out in
finding the original @y(c, t) from the conversion formula, Consequently, this original @y (0, t) does not exist, and so
the inverse Fourier transform of function $v(oc, p), determined from (6), does not exist,

If Re A =<0, then Re p =0, Therefore, when Re A =0, the inverse Fourier transform of function c';y(oc. p) does
exist,

Thus, the result obtained above may be géneralized in the following way: if solutions zjk, Zsk, Zgk of system of
equations (11), (12) satisfying the condition
Mhg (2], — 1)
JHEo]
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exist, then the problem posed is soluble, and the solution is found from (8) and (9).
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